Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 26 - 50 of 110 results
26.

Degradation-driven protein level oscillation in the yeast Saccharomyces cerevisiae.

blue AtLOV2 S. cerevisiae
Biosystems, 8 Jun 2022 DOI: 10.1016/j.biosystems.2022.104717 Link to full text
Abstract: Generating robust, predictable perturbations in cellular protein levels will advance our understanding of protein function and enable the control of physiological outcomes in biotechnology applications. Timed periodic changes in protein levels play a critical role in the cell division cycle, cellular stress response, and development. Here we report the generation of robust protein level oscillations by controlling the protein degradation rate in the yeast Saccharomyces cerevisiae. Using a photo-sensitive degron and red fluorescent proteins as reporters, we show that under constitutive transcriptional induction, repeated triangular protein level oscillations as fast as 5-10 min-scale can be generated by modulating the protein degradation rate. Consistent with oscillations generated though transcriptional control, we observed a continuous decrease in the magnitude of oscillations as the input modulation frequency increased, indicating low-pass filtering of input perturbation. By using two red fluorescent proteins with distinct maturation times, we show that the oscillations in protein level is largely unaffected by delays originating from functional protein formation. Our study demonstrates the potential for repeated control of protein levels by controlling the protein degradation rate without altering the transcription rate.
27.

Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.

blue CRY2/CIB1 S. cerevisiae Transgene expression
Biotechnol J, 28 Apr 2022 DOI: 10.1002/biot.202100676 Link to full text
Abstract: Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step.
28.

Synthetic gene networks recapitulate dynamic signal decoding and differential gene expression.

blue CRY2/CIB1 EL222 S. cerevisiae Transgene expression
Cell Syst, 14 Mar 2022 DOI: 10.1016/j.cels.2022.02.004 Link to full text
Abstract: Cells live in constantly changing environments and employ dynamic signaling pathways to transduce information about the signals they encounter. However, the mechanisms by which dynamic signals are decoded into appropriate gene expression patterns remain poorly understood. Here, we devise networked optogenetic pathways that achieve dynamic signal processing functions that recapitulate cellular information processing. Exploiting light-responsive transcriptional regulators with differing response kinetics, we build a falling edge pulse detector and show that this circuit can be employed to demultiplex dynamically encoded signals. We combine this demultiplexer with dCas9-based gene networks to construct pulsatile signal filters and decoders. Applying information theory, we show that dynamic multiplexing significantly increases the information transmission capacity from signal to gene expression state. Finally, we use dynamic multiplexing for precise multidimensional regulation of a heterologous metabolic pathway. Our results elucidate design principles of dynamic information processing and provide original synthetic systems capable of decoding complex signals for biotechnological applications.
29.

Using single-cell models to predict the functionality of synthetic circuits at the population scale.

blue EL222 S. cerevisiae Transgene expression
Proc Natl Acad Sci U S A, 10 Mar 2022 DOI: 10.1073/pnas.2114438119 Link to full text
Abstract: SignificanceAt the single-cell level, biochemical processes are inherently stochastic. For many natural systems, the resulting cell-to-cell variability is exploited by microbial populations. In synthetic biology, however, the interplay of cell-to-cell variability and population processes such as selection or growth often leads to circuits not functioning as predicted by simple models. Here we show how multiscale stochastic kinetic models that simultaneously track single-cell and population processes can be obtained based on an augmentation of the chemical master equation. These models enable us to quantitatively predict complex population dynamics of a yeast optogenetic differentiation system from a specification of the circuit's components and to demonstrate how cell-to-cell variability can be exploited to purposefully create unintuitive circuit functionality.
30.

Systematic In Vivo Characterization of Fluorescent Protein Maturation in Budding Yeast.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 18 Feb 2022 DOI: 10.1021/acssynbio.1c00387 Link to full text
Abstract: Fluorescent protein (FP) maturation can limit the accuracy with which dynamic intracellular processes are captured and reduce the in vivo brightness of a given FP in fast-dividing cells. The knowledge of maturation timescales can therefore help users determine the appropriate FP for each application. However, in vivo maturation rates can greatly deviate from in vitro estimates that are mostly available. In this work, we present the first systematic study of in vivo maturation for 12 FPs in budding yeast. To overcome the technical limitations of translation inhibitors commonly used to study FP maturation, we implemented a new approach based on the optogenetic stimulations of FP expression in cells grown under constant nutrient conditions. Combining the rapid and orthogonal induction of FP transcription with a mathematical model of expression and maturation allowed us to accurately estimate maturation rates from microscopy data in a minimally invasive manner. Besides providing a useful resource for the budding yeast community, we present a new joint experimental and computational approach for characterizing FP maturation, which is applicable to a wide range of organisms.
31.

An Optogenetic Toolbox for Synergistic Regulation of Protein Abundance.

blue iLID LOVTRAP in vitro S. cerevisiae Transgene expression
ACS Synth Biol, 19 Nov 2021 DOI: 10.1021/acssynbio.1c00350 Link to full text
Abstract: Optogenetic tools have been proven to be useful in regulating cellular processes via an external signal. Light can be applied with high spatial and temporal precision as well as easily modulated in quantity and quality. Natural photoreceptors of the light oxygen voltage (LOV) domain family have been characterized in depth, especially the LOV2 domain of Avena sativa (As) phototropin 1 and its derivatives. Information on the behavior of LOV2 variants with changes in the photocycle or the light response has been recorded. Here, we applied well-described photocycle mutations on the AsLOV2 domain of a photosensitive transcription factor (psTF) as well as its variant that is part of the photosensitive degron (psd) psd3 in Saccharomyces cerevisiae. In vivo and in vitro measurements revealed that each photoreceptor component of the light-sensitive transcription factor and the psd3 module can be modulated in its light sensitivity by mutations that are known to prolong or shorten the dark-reversion time of AsLOV2. Yet, only two of the mutations showed differences in the in vivo behavior in the context of the psd3 module. For the AsLOV2 domain in the context of the psTF, we observed different characteristics for all four variants. Molecular dynamics simulations showed distinct influences of the shortened Jα helix and the V416L mutation in the context of the psd3 photoreceptor. In conclusion, we demonstrated the tunability of two optogenetic tools with a set of mutations that affect the photocycle of the inherent photoreceptors. As these optogenetic tools are concurrent in their action, pleiotropic effects on target protein abundance are achievable with the simultaneous action of the diverse photoreceptor variants.
32.

A light tunable differentiation system for the creation and control of consortia in yeast.

blue EL222 S. cerevisiae Transgene expression Cell differentiation
Nat Commun, 5 Oct 2021 DOI: 10.1038/s41467-021-26129-7 Link to full text
Abstract: Artificial microbial consortia seek to leverage division-of-labour to optimize function and possess immense potential for bioproduction. Co-culturing approaches, the preferred mode of generating a consortium, remain limited in their ability to give rise to stable consortia having finely tuned compositions. Here, we present an artificial differentiation system in budding yeast capable of generating stable microbial consortia with custom functionalities from a single strain at user-defined composition in space and in time based on optogenetically-driven genetic rewiring. Owing to fast, reproducible, and light-tunable dynamics, our system enables dynamic control of consortia composition in continuous cultures for extended periods. We further demonstrate that our system can be extended in a straightforward manner to give rise to consortia with multiple subpopulations. Our artificial differentiation strategy establishes a novel paradigm for the creation of complex microbial consortia that are simple to implement, precisely controllable, and versatile to use.
33.

Rapid prototyping and design of cybergenetic single-cell controllers.

blue EL222 S. cerevisiae
Nat Commun, 24 Sep 2021 DOI: 10.1038/s41467-021-25754-6 Link to full text
Abstract: The design and implementation of synthetic circuits that operate robustly in the cellular context is fundamental for the advancement of synthetic biology. However, their practical implementation presents challenges due to low predictability of synthetic circuit design and time-intensive troubleshooting. Here, we present the Cyberloop, a testing framework to accelerate the design process and implementation of biomolecular controllers. Cellular fluorescence measurements are sent in real-time to a computer simulating candidate stochastic controllers, which in turn compute the control inputs and feed them back to the controlled cells via light stimulation. Applying this framework to yeast cells engineered with optogenetic tools, we examine and characterize different biomolecular controllers, test the impact of non-ideal circuit behaviors such as dilution on their operation, and qualitatively demonstrate improvements in controller function with certain network modifications. From this analysis, we derive conditions for desirable biomolecular controller performance, thereby avoiding pitfalls during its biological implementation.
34.

Optogenetic Tools for Control of Public Goods in Saccharomyces cerevisiae.

blue CRY2/CIB1 S. cerevisiae
mSphere, 25 Aug 2021 DOI: 10.1128/msphere.00581-21 Link to full text
Abstract: Microorganisms live in dense and diverse communities, with interactions between cells guiding community development and phenotype. The ability to perturb specific intercellular interactions in space and time provides a powerful route to determining the critical interactions and design rules for microbial communities. Approaches using optogenetic tools to modulate these interactions offer promise, as light can be exquisitely controlled in space and time. We report new plasmids for rapid integration of an optogenetic system into Saccharomyces cerevisiae to engineer light control of expression of a gene of interest. In a proof-of-principle study, we demonstrate the ability to control a model cooperative interaction, namely, the expression of the enzyme invertase (SUC2) which allows S. cerevisiae to hydrolyze sucrose and utilize it as a carbon source. We demonstrate that the strength of this cooperative interaction can be tuned in space and time by modulating light intensity and through spatial control of illumination. Spatial control of light allows cooperators and cheaters to be spatially segregated, and we show that the interplay between cooperative and inhibitory interactions in space can lead to pattern formation. Our strategy can be applied to achieve spatiotemporal control of expression of a gene of interest in S. cerevisiae to perturb both intercellular and interspecies interactions. IMPORTANCE Recent advances in microbial ecology have highlighted the importance of intercellular interactions in controlling the development, composition, and resilience of microbial communities. In order to better understand the role of these interactions in governing community development, it is critical to be able to alter them in a controlled manner. Optogenetically controlled interactions offer advantages over static perturbations or chemically controlled interactions, as light can be manipulated in space and time and does not require the addition of nutrients or antibiotics. Here, we report a system for rapidly achieving light control of a gene of interest in the important model organism Saccharomyces cerevisiae and demonstrate that by controlling expression of the enzyme invertase, we can control cooperative interactions. This approach will be useful for understanding intercellular and interspecies interactions in natural and synthetic microbial consortia containing S. cerevisiae and serves as a proof of principle for implementing this approach in other consortia.
35.

Mapping the dynamic transfer functions of eukaryotic gene regulation.

blue CRY2/CIB1 S. cerevisiae
Cell Syst, 24 Aug 2021 DOI: 10.1016/j.cels.2021.08.003 Link to full text
Abstract: Biological information can be encoded within the dynamics of signaling components, which has been implicated in a broad range of physiological processes including stress response, oncogenesis, and stem cell differentiation. To study the complexity of information transfer across the eukaryotic promoter, we screened 119 dynamic conditions-modulating the pulse frequency, amplitude, and pulse width of light-regulating the binding of an epigenome editor to a fluorescent reporter. This system revealed tunable gene expression and filtering behaviors and provided a quantification of the limit to the amount of information that can be reliably transferred across a single promoter as ∼1.7 bits. Using a library of over 100 orthogonal chromatin regulators, we further determined that chromatin state could be used to tune mutual information and expression levels, as well as completely alter the input-output transfer function of the promoter. This system unlocks the information-rich content of eukaryotic gene regulation.
36.

Modular and Molecular Optimization of a LOV (Light-Oxygen-Voltage)-Based Optogenetic Switch in Yeast.

blue NcWC1-LOV VVD S. cerevisiae Transgene expression
Int J Mol Sci, 9 Aug 2021 DOI: 10.3390/ijms22168538 Link to full text
Abstract: Optogenetic switches allow light-controlled gene expression with reversible and spatiotemporal resolution. In Saccharomyces cerevisiae, optogenetic tools hold great potential for a variety of metabolic engineering and biotechnology applications. In this work, we report on the modular optimization of the fungal light-oxygen-voltage (FUN-LOV) system, an optogenetic switch based on photoreceptors from the fungus Neurospora crassa. We also describe new switch variants obtained by replacing the Gal4 DNA-binding domain (DBD) of FUN-LOV with nine different DBDs from yeast transcription factors of the zinc cluster family. Among the tested modules, the variant carrying the Hap1p DBD, which we call "HAP-LOV", displayed higher levels of luciferase expression upon induction compared to FUN-LOV. Further, the combination of the Hap1p DBD with either p65 or VP16 activation domains also resulted in higher levels of reporter expression compared to the original switch. Finally, we assessed the effects of the plasmid copy number and promoter strength controlling the expression of the FUN-LOV and HAP-LOV components, and observed that when low-copy plasmids and strong promoters were used, a stronger response was achieved in both systems. Altogether, we describe a new set of blue-light optogenetic switches carrying different protein modules, which expands the available suite of optogenetic tools in yeast and can additionally be applied to other systems.
37.

Optogenetic Control of Microbial Consortia Populations for Chemical Production.

blue YtvA E. coli S. cerevisiae Transgene expression
ACS Synth Biol, 5 Aug 2021 DOI: 10.1021/acssynbio.1c00182 Link to full text
Abstract: Microbial co-culture fermentations can improve chemical production from complex biosynthetic pathways over monocultures by distributing enzymes across multiple strains, thereby reducing metabolic burden, overcoming endogenous regulatory mechanisms, or exploiting natural traits of different microbial species. However, stabilizing and optimizing microbial subpopulations for maximal chemical production remains a major obstacle in the field. In this study, we demonstrate that optogenetics is an effective strategy to dynamically control populations in microbial co-cultures. Using a new optogenetic circuit we call OptoTA, we regulate an endogenous toxin-antitoxin system, enabling tunability of Escherichia coli growth using only blue light. With this system we can control the population composition of co-cultures of E. coli and Saccharomyces cerevisiae. When introducing in each strain different metabolic modules of biosynthetic pathways for isobutyl acetate or naringenin, we found that the productivity of co-cultures increases by adjusting the population ratios with specific light duty cycles. This study shows the feasibility of using optogenetics to control microbial consortia populations and the advantages of using light to control their chemical production.
38.

The Neurospora crassa Inducible Q System Enables Simultaneous Optogenetic Amplification and Inversion in Saccharomyces cerevisiae for Bidirectional Control of Gene Expression.

blue EL222 S. cerevisiae Transgene expression
ACS Synth Biol, 4 Aug 2021 DOI: 10.1021/acssynbio.1c00229 Link to full text
Abstract: Bidirectional optogenetic control of yeast gene expression has great potential for biotechnological applications. Our group has developed optogenetic inverter circuits that activate transcription using darkness, as well as amplifier circuits that reach high expression levels under limited light. However, because both types of circuits harness Gal4p and Gal80p from the galactose (GAL) regulon they cannot be used simultaneously. Here, we apply the Q System, a transcriptional activator/inhibitor system from Neurospora crassa, to build circuits in Saccharomyces cerevisiae that are inducible using quinic acid, darkness, or blue light. We develop light-repressed OptoQ-INVRT circuits that initiate darkness-triggered transcription within an hour of induction, as well as light-activated OptoQ-AMP circuits that achieve up to 39-fold induction. The Q System does not exhibit crosstalk with the GAL regulon, allowing coutilization of OptoQ-AMP circuits with previously developed OptoINVRT circuits. As a demonstration of practical applications in metabolic engineering, we show how simultaneous use of these circuits can be used to dynamically control both growth and production to improve acetoin production, as well as enable light-tunable co-production of geraniol and linalool, two terpenoids implicated in the hoppy flavor of beer. OptoQ-AMP and OptoQ-INVRT circuits enable simultaneous optogenetic signal amplification and inversion, providing powerful additions to the yeast optogenetic toolkit.
39.

Designer membraneless organelles sequester native factors for control of cell behavior.

violet PhoCl S. cerevisiae Organelle manipulation
Nat Chem Biol, 2 Aug 2021 DOI: 10.1038/s41589-021-00840-4 Link to full text
Abstract: Subcellular compartmentalization of macromolecules increases flux and prevents inhibitory interactions to control biochemical reactions. Inspired by this functionality, we sought to build designer compartments that function as hubs to regulate the flow of information through cellular control systems. We report a synthetic membraneless organelle platform to control endogenous cellular activities through sequestration and insulation of native proteins. We engineer and express a disordered protein scaffold to assemble micron-size condensates and recruit endogenous clients via genomic tagging with high-affinity dimerization motifs. By relocalizing up to 90% of targeted enzymes to synthetic condensates, we efficiently control cellular behaviors, including proliferation, division and cytoskeletal organization. Further, we demonstrate multiple strategies for controlled cargo release from condensates to switch cells between functional states. These synthetic organelles offer a powerful and generalizable approach to modularly control cell decision-making in a variety of model systems with broad applications for cellular engineering.
40.

Circularly permuted AsLOV2 as an optogenetic module for engineering photoswitchable peptides.

blue AsLOV2 cpLOV2 iLID HEK293T S. cerevisiae
Chem Commun (Camb), 22 Jul 2021 DOI: 10.1039/d1cc02643g Link to full text
Abstract: We re-engineered a commonly-used light-sensing protein, AsLOV2, using a circular permutation strategy to allow photoswitchable control of the C-terminus of a peptide. We demonstrate that the circularly permuted AsLOV2 can be used on its own or together with the original AsLOV2 for enhanced caging. In summary, circularly permuted AsLOV2 could expand the engineering capabilities of optogenetic tools.
41.

Cellulosic biofuel production using emulsified simultaneous saccharification and fermentation (eSSF) with conventional and thermotolerant yeasts.

blue EL222 S. cerevisiae
Biotechnol Biofuels, 17 Jul 2021 DOI: 10.1186/s13068-021-02008-7 Link to full text
Abstract: Future expansion of corn-derived ethanol raises concerns of sustainability and competition with the food industry. Therefore, cellulosic biofuels derived from agricultural waste and dedicated energy crops are necessary. To date, slow and incomplete saccharification as well as high enzyme costs have hindered the economic viability of cellulosic biofuels, and while approaches like simultaneous saccharification and fermentation (SSF) and the use of thermotolerant microorganisms can enhance production, further improvements are needed. Cellulosic emulsions have been shown to enhance saccharification by increasing enzyme contact with cellulose fibers. In this study, we use these emulsions to develop an emulsified SSF (eSSF) process for rapid and efficient cellulosic biofuel production and make a direct three-way comparison of ethanol production between S. cerevisiae, O. polymorpha, and K. marxianus in glucose and cellulosic media at different temperatures.
42.

A photo-switchable yeast isocitrate dehydrogenase to control metabolic flux through the citric acid cycle.

blue AsLOV2 S. cerevisiae Transgene expression
bioRxiv, 25 May 2021 DOI: 10.1101/2021.05.25.445643 Link to full text
Abstract: For various research questions in metabolism, it is highly desirable to have means available, with which the flux through specific pathways can be perturbed dynamically, in a reversible manner, and at a timescale that is consistent with the fast turnover rates of metabolism. Optogenetics, in principle, offers such possibility. Here, we developed an initial version of a photo-switchable isocitrate dehydrogenase (IDH) aimed at controlling the metabolic flux through the citric acid cycle in budding yeast. By inserting a protein-based light switch (LOV2) into computationally identified active/regulatory-coupled sites of IDH and by using in vivo screening in Saccharomyces cerevisiae, we obtained a number of IDH enzymes whose activity can be switched by light. Subsequent in-vivo characterization and optimization resulted in an initial version of photo-switchable (PS) IDH. While further improvements of the enzyme are necessary, our study demonstrates the efficacy of the overall approach from computational design, via in vivo screening and characterization. It also represents one of the first few examples, where optogenetics were used to control the activity of a metabolic enzyme.
43.

Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement.

blue CRY2/CIB1 S. cerevisiae
Elife, 18 May 2021 DOI: 10.7554/elife.66238 Link to full text
Abstract: Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
44.

Light-dependent N-end rule-mediated disruption of protein function in Saccharomyces cerevisiae and Drosophila melanogaster.

blue AsLOV2 D. melanogaster in vivo S. cerevisiae Transgene expression
PLoS Genet, 17 May 2021 DOI: 10.1371/journal.pgen.1009544 Link to full text
Abstract: Here we describe the development and characterization of the photo-N-degron, a peptide tag that can be used in optogenetic studies of protein function in vivo. The photo-N-degron can be expressed as a genetic fusion to the amino termini of other proteins, where it undergoes a blue light-dependent conformational change that exposes a signal for the class of ubiquitin ligases, the N-recognins, which mediate the N-end rule mechanism of proteasomal degradation. We demonstrate that the photo-N-degron can be used to direct light-mediated degradation of proteins in Saccharomyces cerevisiae and Drosophila melanogaster with fine temporal control. In addition, we compare the effectiveness of the photo-N-degron with that of two other light-dependent degrons that have been developed in their abilities to mediate the loss of function of Cactus, a component of the dorsal-ventral patterning system in the Drosophila embryo. We find that like the photo-N-degron, the blue light-inducible degradation (B-LID) domain, a light-activated degron that must be placed at the carboxy terminus of targeted proteins, is also effective in eliciting light-dependent loss of Cactus function, as determined by embryonic dorsal-ventral patterning phenotypes. In contrast, another previously described photosensitive degron (psd), which also must be located at the carboxy terminus of associated proteins, has little effect on Cactus-dependent phenotypes in response to illumination of developing embryos. These and other observations indicate that care must be taken in the selection and application of light-dependent and other inducible degrons for use in studies of protein function in vivo, but importantly demonstrate that N- and C-terminal fusions to the photo-N-degron and the B-LID domain, respectively, support light-dependent degradation in vivo.
45.

Optogenetic Amplification Circuits for Light-Induced Metabolic Control.

blue EL222 S. cerevisiae
ACS Synth Biol, 9 Apr 2021 DOI: 10.1021/acssynbio.0c00642 Link to full text
Abstract: Dynamic control of microbial metabolism is an effective strategy to improve chemical production in fermentations. While dynamic control is most often implemented using chemical inducers, optogenetics offers an attractive alternative due to the high tunability and reversibility afforded by light. However, a major concern of applying optogenetics in metabolic engineering is the risk of insufficient light penetration at high cell densities, especially in large bioreactors. Here, we present a new series of optogenetic circuits we call OptoAMP, which amplify the transcriptional response to blue light by as much as 23-fold compared to the basal circuit (OptoEXP). These circuits show as much as a 41-fold induction between dark and light conditions, efficient activation at light duty cycles as low as ∼1%, and strong homogeneous light-induction in bioreactors of at least 5 L, with limited illumination at cell densities above 40 OD600. We demonstrate the ability of OptoAMP circuits to control engineered metabolic pathways in novel three-phase fermentations using different light schedules to control enzyme expression and improve production of lactic acid, isobutanol, and naringenin. These circuits expand the applicability of optogenetics to metabolic engineering.
46.

A single-chain and fast-responding light-inducible Cre recombinase as a novel optogenetic switch.

blue AsLOV2 CRY2/CIB1 Magnets HEK293 S. cerevisiae Transgene expression Nucleic acid editing
Elife, 23 Feb 2021 DOI: 10.7554/elife.61268 Link to full text
Abstract: Optogenetics enables genome manipulations with high spatiotemporal resolution, opening exciting possibilities for fundamental and applied biological research. Here, we report the development of LiCre, a novel light-inducible Cre recombinase. LiCre is made of a single flavin-containing protein comprising the AsLOV2 photoreceptor domain of Avena sativa fused to a Cre variant carrying destabilizing mutations in its N-terminal and C-terminal domains. LiCre can be activated within minutes of illumination with blue light, without the need of additional chemicals. When compared to existing photoactivatable Cre recombinases based on two split units, LiCre displayed faster and stronger activation by light as well as a lower residual activity in the dark. LiCre was efficient both in yeast, where it allowed us to control the production of β-carotene with light, and in human cells. Given its simplicity and performances, LiCre is particularly suited for fundamental and biomedical research, as well as for controlling industrial bioprocesses.
47.

Living materials with programmable functionalities grown from engineered microbial co-cultures.

blue CRY2/CIB1 S. cerevisiae Transgene expression
Nat Mater, 11 Jan 2021 DOI: 10.1038/s41563-020-00857-5 Link to full text
Abstract: Biological systems assemble living materials that are autonomously patterned, can self-repair and can sense and respond to their environment. The field of engineered living materials aims to create novel materials with properties similar to those of natural biomaterials using genetically engineered organisms. Here, we describe an approach to fabricating functional bacterial cellulose-based living materials using a stable co-culture of Saccharomyces cerevisiae yeast and bacterial cellulose-producing Komagataeibacter rhaeticus bacteria. Yeast strains can be engineered to secrete enzymes into bacterial cellulose, generating autonomously grown catalytic materials and enabling DNA-encoded modification of bacterial cellulose bulk properties. Alternatively, engineered yeast can be incorporated within the growing cellulose matrix, creating living materials that can sense and respond to chemical and optical stimuli. This symbiotic culture of bacteria and yeast is a flexible platform for the production of bacterial cellulose-based engineered living materials with potential applications in biosensing and biocatalysis.
48.

Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.

blue EL222 S. cerevisiae Transgene expression Endogenous gene expression
ACS Synth Biol, 24 Nov 2020 DOI: 10.1021/acssynbio.0c00305 Link to full text
Abstract: The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.
49.

Creating Red Light-Switchable Protein Dimerization Systems as Genetically Encoded Actuators with High Specificity.

near-infrared red BphP1/PpsR2 DrBphP HEK293T HeLa mouse in vivo S. cerevisiae
ACS Synth Biol, 12 Nov 2020 DOI: 10.1021/acssynbio.0c00397 Link to full text
Abstract: Protein dimerization systems controlled by red light with increased tissue penetration depth are a highly needed tool for clinical applications such as cell and gene therapies. However, mammalian applications of existing red light-induced dimerization systems are hampered by limitations of their two components: a photosensory protein (or photoreceptor) which often requires a mammalian exogenous chromophore and a naturally occurring photoreceptor binding protein typically having a complex structure and nonideal binding properties. Here, we introduce an efficient, generalizable method (COMBINES-LID) for creating highly specific, reversible light-induced heterodimerization systems independent of any existing binders to a photoreceptor. It involves a two-step binder screen (phage display and yeast two-hybrid) of a combinatorial nanobody library to obtain binders that selectively engage a light-activated form of a photoswitchable protein or domain not the dark form. Proof-of-principle was provided by engineering nanobody-based, red light-induced dimerization (nanoReD) systems comprising a truncated bacterial phytochrome sensory module using a mammalian endogenous chromophore, biliverdin, and light-form specific nanobodies. Selected nanoReD systems were biochemically characterized, exhibiting low dark activity and high induction specificity, and further demonstrated for the reversible control of protein translocation and activation of gene expression in mice. Overall, COMBINES-LID opens new opportunities for creating genetically encoded actuators for the optical manipulation of biological processes.
50.

An optogenetic switch for the Set2 methyltransferase provides evidence for transcription-dependent and -independent dynamics of H3K36 methylation.

blue AsLOV2 S. cerevisiae Epigenetic modification
Genome Res, 5 Oct 2020 DOI: 10.1101/gr.264283.120 Link to full text
Abstract: Histone H3 lysine 36 methylation (H3K36me) is a conserved histone modification associated with transcription and DNA repair. Although the effects of H3K36 methylation have been studied, the genome-wide dynamics of H3K36me deposition and removal are not known. We established rapid and reversible optogenetic control for Set2, the sole H3K36 methyltransferase in yeast, by fusing the enzyme with the light-activated nuclear shuttle (LANS) domain. Light activation resulted in efficient Set2-LANS nuclear localization followed by H3K36me3 deposition in vivo, with total H3K36me3 levels correlating with RNA abundance. Although genes showed disparate levels of H3K36 methylation, relative rates of H3K36me3 accumulation were largely linear and consistent across genes, suggesting that H3K36me3 deposition occurs in a directed fashion on all transcribed genes regardless of their overall transcription frequency. Removal of H3K36me3 was highly dependent on the demethylase Rph1. However, the per-gene rate of H3K36me3 loss weakly correlated with RNA abundance and followed exponential decay, suggesting H3K36 demethylases act in a global, stochastic manner. Altogether, these data provide a detailed temporal view of H3K36 methylation and demethylation that suggests transcription-dependent and -independent mechanisms for H3K36me deposition and removal, respectively.
Submit a new publication to our database